Pelvic organ prolapse, abdominal hernias, and inguinal hernias: Diagnosis and Management





Key points





  • Pelvic organ prolapse is defined as the descent of one or more compartments of the vagina: the anterior vaginal wall, posterior vaginal wall, uterus (cervix), or apex (vaginal vault or cuff scar after hysterectomy). Pelvic organ prolapse often includes a mixture of anterior, posterior, and apical prolapse, and each compartment should be evaluated under strain before determining the appropriate operative treatment.



  • Pelvic organ prolapse is more likely to be symptomatic when the leading edge protrudes past the hymen; it can be managed expectantly if asymptomatic.



  • Pessaries should be offered to all women with symptomatic pelvic organ prolapse. Renal function should be evaluated in women with advanced pelvic organ prolapse if the patient declines treatment to reduce the prolapse (because of concern for ureteral obstruction).



  • Surgery for pelvic organ prolapse is usually effective at decreasing a vaginal bulge, but the effects on urinary, bowel, and sexual function can vary. It is important to elicit patients’ goals before surgery.



  • The cardinal and uterosacral ligaments normally hold the uterus and upper vagina in the proper location. Uterosacral and sacrospinous ligaments are the best surgical support structures for apical transvaginal, native tissue pelvic organ prolapse surgery.



  • Vaginal vault prolapse can be repaired abdominally or vaginally. An abdominal sacral colpopexy with synthetic mesh appears to have a higher long-term success rates than vaginal surgery without mesh but with higher surgical complication rates.



  • All women with significant apical prolapse, anterior prolapse, or both should have a preoperative evaluation for occult stress urinary incontinence, with full bladder cough stress testing or urodynamic testing with the prolapse reduced.



The structural supports of the abdomen and pelvis are susceptible to a number of stresses. The development of defects might be affected by congenital anatomic predispositions, pregnancy, childbirth injuries, surgical damage, aging, and chronic stresses such as heavy lifting, chronic cough, and straining to defecate. Descent of the pelvic organs is called pelvic organ prolapse. It manifests as a vaginal bulge and is often associated with concurrent urinary, sexual, and bowel symptoms . It is rarely medically dangerous unless it is associated with evisceration or urinary obstruction, and it can range from asymptomatic or mildly symptomatic to severely debilitating.


Abdominal wall hernias


A hernia is a protrusion or bulge of an organ or part of an organ through the body wall. The abdominal wall is made up of the following structures, beginning externally: skin; subcutaneous connective tissue; external oblique, internal oblique, and transversus abdominis muscles with their investing fascia; and parietal peritoneum. The rectus abdominis muscles run longitudinally in the midline from the xiphoid to the pubic symphysis. The investing fasciae of the external oblique, internal oblique, and transversus abdominis muscles completely encase the rectus abdominis muscles cephalad to the semilunar line. Caudally from the semilunar line the muscle is completely behind the aponeurosis of the fasciae of these muscles and lies directly on the peritoneum ( Fig. 20.1 ). Normally the investing fasciae join in the midline after surrounding the rectus abdominis muscles.




Fig. 20.1


Layers of the abdominal wall. A, Above semilunar line. B, Below semilunar line.


In the male, the descent of the testes from their original retroperitoneal site to the scrotum necessitates passing through the abdominal wall to the inguinal region. At the level of the transversalis fascia where the descent begins, the internal inguinal ring is formed. The inferior epigastric artery defines the medial margin of this ring as it courses from the external iliac artery medially and superiorly into the rectus sheath. The inguinal canal runs from the internal inguinal ring obliquely downward, emerging through the external inguinal ring and opening in the external oblique aponeurosis just above the pubic spine, and then continuing into the scrotum. This allows for passage of the testes and for the presence of part of the spermatic cord. In the female, the round ligament courses in the same direction but ends short of the labia.


Common hernias are ventral (incisional and umbilical) and groin (inguinal and femoral). Rarer hernias are Spigelian and parastomal. An inguinal hernia—that is, a bulge of peritoneum through the internal inguinal ring and into the inguinal canal—is less common in the female than in the male and is often identified after stretching of the abdominal wall during or after pregnancy. It may be related to a congenital weakness of this area. Occasionally a femoral-type groin hernia may develop. In this case the defect in the transversalis fascia occurs in the Hesselbach triangle, which is an area bounded laterally by the inferior epigastric artery, inferiorly by the inguinal ligament, and medially by the lateral margin of the rectus sheath ( Fig. 20.2 ). The hernia sac passes under the inguinal ligament into the femoral triangle rather than coursing through the inguinal canal. Femoral hernias are more common in females than in males and have higher risk of strangulation ( ).




Fig. 20.2


Right femoral ( A ) and right inguinal ( B ) hernias in the female.


A ventral hernia occurs in the abdominal wall away from the groin. Examples include umbilical hernias, which are caused by congenital relaxation of the umbilical ring, and incisional hernias, which are herniations through separation of fascial planes after operative incision. Umbilical hernias are more common in women than men. Incisional hernias generally involve the separation of the fascia of the abdominal wall with the hernia sac palpated beneath the skin and subcutaneous tissue. The sac wall is composed of peritoneum. Because the umbilicus consists of a fusion of skin, fascia, and peritoneum, an umbilical hernia generally occurs because the fascial ring is grossly separated, allowing the hernia sac to protrude. This occurs most often in obese women. The hernia sac itself is made up of peritoneum and subcutaneous tissue beneath the skin ( Fig. 20.3 ). Two special ventral hernias include the epigastric hernia, which occurs in a defect of the linea alba above the umbilicus, and spigelian hernia, which is a herniation at a point where the vertical linea semilunaris joins the lateral border of the rectus muscle. Spigelian hernias are rare (<2% of all hernias).




Fig. 20.3


Umbilical hernia. Schemas depicting the normal umbilicus: A, normal anatomy; B, in a cirrhotic patient with umbilical hernia. a, umbilicus; b, rectus abdominus muscle, and c parietal peritoneum.

(From Dokmak S, Aussilhou B, Belghiti J. Umbilical hernias and cirrhose. J Visc Surg. 2012;149(5):e32-e39.)


With a reducible hernia, the contents can be returned to the abdominal cavity. If the contents cannot be reduced, the hernia is said to be incarcerated. An incarcerated hernia may be acute, accompanied by pain, or long-standing and asymptomatic. If the blood supply to the incarcerated structure is compromised, the hernia is said to be strangulated. Because the hernia sac is primarily prolapsed peritoneum, the hernia itself is not strangulated but only its contents. On rare occasions, a portion of the wall of the hernia sac is composed of an organ such as the sigmoid colon or the cecum.


Rectus abdominis diastasis is an acquired abdominal wall defect in which the rectus muscles on either side of the midline separate. This is not a true hernia because there is no fascial defect , but it is mentioned here for differential diagnosis purposes. Pregnancy is a common risk factor for rectus diastasis.


Etiology


Hernias may be the result of a congenital malformation. The umbilical hernia is the best example . Before 10 weeks’ gestation, the abdominal contents are partially herniated through the umbilicus into the extra embryonic coelomic cavity; however, after 10 weeks the viscera normally return to the abdominal cavity, and the defect in the abdominal wall closes during subsequent fetal growth. Generally at birth only the space occupied by the umbilical cord remains patent. After the cutting of the cord, the area heals so that the skin in the area of the umbilicus fuses above the closed fascial layer. Some infants at birth will show a small umbilical hernia, but in most instances the fascial defect closes during the first 3 years of life. If it does not close, an umbilical hernia will form. Black infants have umbilical hernias more often than do white infants. Occasionally, umbilical hernias are acquired in adults after the distention of the abdominal cavity with pregnancy or with ascites.


In rare cases the abdominal wall closure process is less complete during gestation, leading to an omphalocele, which is a hernia sac at the umbilicus covered only by peritoneum and including bowel and other abdominal contents. Omphaloceles are usually seen in infants with other malformations and possibly chromosome anomalies, such as trisomy 13.


Hernias that occur in adults are often associated with trauma or injury. In many instances, the hernia bulge develops slowly after years of heavy labor. It is likely that a congenital anatomic defect was always present but became exaggerated over time, leading to the development of a hernia. It has been suggested that inguinal lesions resulted from inadequate muscle support at the lower area of the inguinal canal, primarily caused by a defect in the internal oblique muscle. Stretching of this area in pregnancy may initiate a hernia, but multifactorial reasons are likely responsible.


Summarized risk factors for hernia development are:




  • History of prior hernia



  • Male sex



  • Caucasian race



  • Chronic cough



  • Chronic constipation



  • Abdominal wall injury



  • Smoking



  • Family history of hernia



Incisional hernias generally occur because of poor healing of the fascia after surgery. Risks factors for incisional hernias are usually multifactorial:




  • Vertical midline incision



  • Upper abdominal incision



  • Older age



  • Obesity



  • Smoking



  • Connective tissue diseases



  • Malnutrition



  • Wound infection



  • Excessive tension on the fascial closure with resultant necrosis of the fascia secondary to suturing



Incisional hernias may also occur because absorbable suture loses its tensile strength before healing is complete. Stress and strain secondary to chronic cough or vomiting in the postoperative period may contribute to the process. Emergency surgery increases the risk of incisional hernia. Incisional hernias develop in 10% to 15% of patients after abdominal laparotomy incisions.


Symptoms, signs, and diagnosis


Bulges in the abdominal wall lead to the discovery of most ventral or groin hernias in women, either by a physician at the time of physical examination or by the patient . Occasionally, excessive straining or trauma will be implicated, and the patient may experience a feeling of tearing of tissue. Often the bulges are noted during an increase in intraabdominal pressure such as with coughing, pregnancy or lifting. Most hernias are asymptomatic, but in some cases, particularly with larger ones, there may be aching or discomfort. Should intraabdominal organs move into the sac, the patient may experience some discomfort. Organs that strangulate within the sac cause acute pain and discomfort. Incarcerated organs may give nonspecific visceral pain, which is most likely the result of mesenteric stretching. An incisional hernia with incarceration may present with a bowel obstruction.


In cases in which a hernia exists but no contents are within the sac, physical examination reveals a weakening at the site of the hernia. It is often possible to feel the “ring” of the hernia as one palpates the defect through the skin and subcutaneous tissue. The patient’s straining will generally accentuate the hernia, making it more palpable and visible. In the case of inguinal and femoral hernias, it may be necessary for the patient to be standing for one to palpate the hernia.


When there are intraabdominal contents within the hernia sac, the hernia is more easily palpated. The physician should then decide, based on his or her attempts to gently milk the contents from the sac back through the defect ring, whether the contents are reducible. For a hernia that does not reduce easily but in which there is no evidence of vascular compromise, it is sometimes useful to apply ice packs to the abdomen in the area of the incarcerated hernia before additional attempts are made to reduce it. In cases of strangulated hernia, evidence of devitalization of an organ, such as fever, leukocytosis, and evidence for an acute abdomen, may be noted.


With classic presentation of strangulated hernia on history and physical examination, surgical management should be pursued without imaging confirmation. If symptoms are present but the examination cannot confirm a hernia, ultrasonography can be ordered. Computed tomography (CT) and magnetic resonance imaging (MRI) provide more anatomic detail and accuracy, but at increased cost and radiation exposure with CT. CT imaging is often recommended for complex, large ventral hernias.


Although not a hernia, rectus abdominis diastasis is usually quite apparent on physical examination. Having the patient raise her head and begin a sit up, which increase in intraabdominal pressure as the two rectus muscles contract, can make the defect apparent as a vertical, midline bulge . This can appear as a long prominent ridge extending from the xiphoid to the umbilicus.


Management of hernias


Nonoperative management of ventral wall and incisional hernias in women is often feasible . Umbilical hernias in little girls generally close by age 3 or 4 years and rarely become incarcerated. Unincarcerated groin hernias are often small and become uncomfortable only with an increase in intraabdominal pressure, such as occurs with pregnancy. Watchful waiting might be appropriate, but surgical repair is often offered. With pregnancy, the opportunity for incarceration is reduced because the increasing size of the uterus pushes bowel contents away from the area of the herniation. Trusses and other supports are generally difficult to fit and are of little value in women. There is no need to restrict physical activities.


Larger hernias, hernias that continuously contain intraabdominal contents, hernias that cause continuing discomfort, and those that have been incarcerated should be repaired . Some general principles of operative repair can be stated. Open and laparoscopic inguinal hernia repairs have been compared in randomized trials. The laparoscopic approach is favored because of decreased pain in the short run and long term. Femoral hernias are often repaired laparoscopically. In many cases the fascial defect is large, and the degree of mobilization that is required may be impossible for a tension-free, simple suture repair. In such instances, patching with inert material, such as polypropylene mesh is necessary. Mesh repairs for uncomplicated groin hernia repairs have become the preferred technique because the recurrence rate is lowered; however, the infection risk is higher. Nonmesh repair techniques may be required for patients with active groin infection or contamination (e.g., as a result of bowel perforation from a strangulated hernia),


Umbilical hernia repair can be done open or laparoscopically. In open repair a curved incision is made at the inferior margin of the umbilicus ( Fig. 20.4 ). The umbilicus is dissected free of the sac and reflected upward. The sac is then dissected free of the fascial defect and either reduced or excised, depending on the circumstances. The fascial edges are freshened and either closed by direct approximation anterior to posterior using nonabsorbable sutures or mobilized and closed in a “vest over pants” manner, suturing the anterior edge to the posterior edge in an overlapping fashion. The umbilicus is then tacked to the fascial defect and the skin margin approximated to recreate a normal appearing umbilicus. Large defects or defects where it is not possible to close the fascial edges without tension will require mesh placement. Laparoscopic repair is also possible and useful to assess viability of incarcerated bowel or in larger defects where mesh is needed. Open mesh repair was associated with significant reduction in the recurrence rate compared with suture repair of umbilical hernia in a meta-analysis of four randomized controlled trials (odds ratio [OR], 0.22; 95% confidence interval (CI), 0.10 to 0.48; P = .0001) ( ). A separate multicenter randomized trial showed a high-level evidence for mesh repair even in patients with small hernias of diameter 1 to 4 cm ( ).




Fig. 20.4


Repair of umbilical hernia. A, Site of incision. B, Umbilicus dissected free of sac and reflected upward. C, Appearance of sac that is cut open. D, Placement of purse-string suture at neck of sac. E, Sac dissected free of fascial defect after suture is tied. F, Appearance of fascial defect after sac has been excised. G, Fascial defect closed; umbilicus will be tacked to it. H, Umbilical hernia repair laparoscopically with mesh. Many umbilical hernia repairs are now done with mesh grafts.

(From Blair LJ, Kercher KW. Umbilical hernia repair. In Atlas of Abdominal Wall Reconstruction. Philadelphia: Elsevier; 2017:360-381.)


Incisional hernia surgical repair is too large of a topic to cover here; however, laparoscopic approaches are increasingly common, as is mesh use. In a meta-analysis of five randomized controlled trials involving 611 patients, the recurrence risk and length of hospital stay were similar, but laparoscopic repairs had reduced risk of wound infection compared with open repairs ( ).


For rectus abdominis diastasis, there is evidence that antenatal exercises reduce this risk of developing this condition; however, it is unclear if exercise postpartum helps. Surgical repair can be considered.


Incisional hernia prevention


Prevention of incisional hernias bears mention because a hernia will develop in 10% to 15% of patients with abdominal incisions . Preventing wound infection with appropriate antibiotic prophylaxis if indicated and careful surgical technique is worthwhile because the hernia rate increases to 23% with postoperative wound infection. Choosing an off-midline incision has been shown to have fewer incisional hernias than midline incisions. A meta-analysis of abdominal fascial closure concluded that a continuous, slowly absorbing, monofilament suture closure resulted in the lowest rates of incisional hernia. A randomized trial comparing long stitch width (>10 mm) with shorter stitch width (5 to 8 mm) identified longer stitch width as an independent risk factor for the development of both incisional hernia (18% vs. 5.6%) and surgical site infection.


Weight loss and smoking cessation should be recommended because these are risk factors for hernia development.


Pelvic organ prolapse


Pelvic organ prolapse (POP) is a condition characterized by the failure of various anatomic structures to support the pelvic viscera. It is defined as the descent of one or more of the vaginal walls or cervix: anterior vaginal wall prolapse (cystocele, urethrocele, paravaginal defect) , posterior vaginal wall prolapse (rectocele or enterocele) , uterine/cervical prolapse, or vaginal vault prolapse (after hysterectomy, often with an enterocele) ( Fig. 20.5 ). Symptoms can include vaginal bulging, pelvic pressure, need to replace the prolapse ( splint ) to void or defecate, sexual dysfunction, vaginal bleeding or discharge, and low backache, or POP can be asymptomatic. Symptoms are more common when the prolapse extends beyond the hymen ( Fig. 20.6 ) ( ). POP usually involves more than one wall of the vagina.




Fig. 20.5


Photographs in lithotomy position and sagittal magnetic resonance images showing vaginal wall prolapse. Prolapse might include (top to bottom): bladder (cystocele), small bowel (enterocele) or rectum (rectocele). Purple: bladder; orange: vagina; brown: colon, and rectum; green: peritoneum.

(From Jelovsek JE, Maher C, Barber MD. Pelvic organ prolapse. Lancet. 2007;369:1027-1038.)



Fig. 20.6


Prevalence of prolapse symptoms per the pelvic organ prolapse quantification (POPQ) system. The percentage of patients who report urinary splinting, digital assistance, and vaginal bulge is demonstrated for each relevant POPQ measurement.

(Modified from Tan JS, Lukacz ES, Menefee SA, et al. Predictive value of prolapse symptoms: a large database study. Int Urogynecol J Pelvic Floor Dysfunct. 2005;16:203-209.)


Present terminology for prolapse refers to anterior vaginal wall, posterior vaginal wall, and vaginal vault prolapse, making no assumptions regarding the organs behind the walls. This system has replaced terms such as cystocele, rectocele, and enterocele , which technically refer to the organs behind the walls of the vagina that are prolapsing. Cystocele, rectocele, and enterocele are still in wide clinical use and are appropriate with when it is known which organs are prolapsing behind the vaginal walls.


Epidemiology of pelvic organ prolapse


POP is common, particularly in parous women, although many are asymptomatic. The prevalence of POP is 30% to 50% ( ). The lifetime risk of undergoing prolapse surgery in the United States is 13% ( ), but most POP does not require treatment ( Fig. 20.7 ). The average age of women having surgery for prolapse is the mid-50s.




Fig. 20.7


Prolapse diagnosis and rates of different management patterns among female Medicare beneficiaries.

(From Khan AA. Trends in management of pelvic organ prolapse among female Medicare beneficiaries. Am J Obstet Gynecol. 2015;212(4):463.e1-463.e8.)


Pelvic support structure defects have been associated with age, parity, vaginal childbirth (neurologic or muscular injury or both), obesity, larger genital hiatus, menopausal status, chronic constipation, connective tissue disorders, genetics/family history, and neurologic diseases ( ; ) ( Box 20.1 ). A single vaginal childbirth is associated with up to 10-fold higher odds of POP, and the risk of surgery for POP may increase with each additional vaginal delivery ( ). In some cases, the injury from childbirth is subtle, but sometimes it is readily apparent, as shown in the images of this woman who had complete right-sided avulsion of her puborectalis (one of the levator ani muscles) after a normal vaginal delivery ( Fig. 20.8 ). Obstetric levator avulsion is strongly associated with POP. Of 453 participants who were 6 to 17 years from first delivery (median, 11 years), levator avulsion was identified in 15% and was more common among those who had undergone forceps-assisted delivery ( P < .001). Levator avulsion was strongly associated with prolapse beyond the hymen (OR, 2.7; 95% CI, 1.3 to 5.7) and with symptoms of prolapse (OR, 3.0; 95% CI, 1.2 to 7.3) ( ). Approximately 98% of prolapse surgery is performed on parous women, and 2% is performed on women who have never been pregnant . Compared with spontaneous vaginal delivery, cesarean delivery was associated with significantly lower hazard for POP ( ). It is unclear if prior hysterectomy for a non-POP indication is a risk factor for developing prolapse. White women appeared to have more overall symptom bother from prolapse, as well as more urinary symptoms, compared with black women, when assessed by validated questionnaire tools in a cohort of patients who underwent prolapse surgery. Compared with African American women, Latina and white women had four to five times higher risk of symptomatic prolapse, and white women had 1.4-fold higher risk of objective prolapse with leading edge of prolapse at or beyond the hymen.



BOX 20.1

Risk Factors for Development of Pelvic Organ Prolapse





  • Vaginal childbirth



  • Increasing parity



  • Aging



  • Obesity



  • Enlarged genital hiatus



  • Menopausal status



  • Chronic constipation/straining



  • Genetic component and family history



  • Connective tissue disorders (Ehlers-Danlos)



  • Neurologic injury



Possible associations with pelvic organ prolapse





  • Prior pelvic surgery



  • Hysterectomy



  • Race and ethnicity



  • Irritable bowel syndrome



  • Episiotomy



  • Higher weight of the largest infant delivered vaginally



  • Chronic cough and respiratory diseases



  • Heavy lifting





Fig. 20.8


Right-sided puborectalis avulsion after normal vaginal delivery at term. The left image shows appearances immediately postpartum, with the avulsed muscle exposed by a large vaginal tear. The middle image shows a rendered volume (axial plane, translabial three-dimensional ultrasound scan) 3 months postpartum, and the right image shows magnetic resonance imaging findings (single slice in the axial plane) at 3.5 months postpartum. Top arrows indicate the site of avulsion on the inferior pubic ramus, and bottom arrows show the retracted stump of puborectalis.

(From Dietz HP, Gillespie A, Phadke P. Avulsion of the pubovisceral muscle associated with large vaginal tear after normal vaginal delivery at term: a case report. Aust N Z J Obstet Gynaecol. 2007;47:341-344.)


Recurrent POP after surgery remains a challenge, especially for the anterior vaginal wall. Risk factors for recurrent POP include age younger than 60 years in women who had vaginal surgery, obesity, and stage III or IV prolapse. Addressing modifiable risk factors before initial surgery might be important (e.g., obesity, chronic constipation). Suspension of the vaginal apex is associated with a decreased reoperation rate ( ).


Often, damage to the pelvic floor results in urinary incontinence instead of or in addition to POP. Urinary incontinence is discussed in detail in Chapter 21 .


Normal pelvic anatomy


Normal support of pelvic organs is provided by several key anatomic structures, including the pelvic floor muscles and connective tissue attachments ( Fig. 20.9 ). Level I support of the vaginal apex and cervix is provided by the uterosacral and cardinal ligaments and associated connective tissue, level II support of the midvagina is provided by connective tissue attachments to the arcus tendineus fasciae pelvis on the lateral pelvic side walls, level III support of the distal (inferior) vagina is provided by the perineal membrane and muscles ( ), and all of the attachments are connected through endopelvic connective tissue.




Fig. 20.9


Level I (suspension) and level II (attachment) support of the vagina. In level I the paracolpium (uterosacral ligaments) suspends the vagina from the lateral pelvic walls. Fibers of level I extend both vertically and posteriorly toward the sacrum. In level II support, the vagina is attached to the arcus tendineus fasciae pelvis and superior fascia of the levator ani by condensations of the levator fascia (e.g., endopelvic and pubocervical fascia). In level III support, the vaginal wall is attached directly to adjacent structures without intervening paracolpium (i.e., urethra anteriorly, perineal body posteriorly, and levator ani muscles laterally).

(From Biggs GY, Nitti VW, Karram M. Pelvic organ prolapse. In: Nitti VW, ed. Vaginal Surgery for the Urologist. Philadelphia: Elsevier; 2012:17-22. Data modified from DeLancey J. Anatomic aspects of vaginal eversion after hysterectomy. Am J Obstet Gynecol. 1992;166(6 Pt 1):1717-1728.)


The vagina is a hollow, fibromuscular tube composed of three layers: nonkeratinizing stratified epithelium, lamina propria (loose connective tissue), and muscularis (fibromuscular tissue with collagen and elastin). It is supported by attachments to the sacrum, coccyx, and lateral pelvic sidewalls. In young, nulliparous women, the distal one-third of the vagina is oriented vertically and the upper two-thirds is oriented horizontally ( Fig. 20.10 ). Anteriorly the vagina supports the base of the bladder and urethra, posteriorly it supports the rectum, and superiorly it supports the small bowel. The vagina is fused with the vaginal muscularis inferiorly.




Fig. 20.10


A and B, In the nulliparous patient, the lower one-third of the vagina is oriented more vertically, whereas the upper two-thirds deviate horizontally, thereby maintaining the vaginal axis in an almost horizontal position. C, During stressful maneuvers such as coughing or straining, the levator hiatus is shortened anteriorly by contraction of the pubococcygeus muscles. D, In the case of genital prolapse when the levator ani support is lost, the vaginal axis becomes more vertical, the urogenital hiatus broadens, and fascial supports are strained.

(From Chapple CR, Milsom I. Urinary incontinence and pelvic prolapse. In: Wein AJ, Kavoussi LR, Novick AC, et al. Campbell-Walsh Urology. 10th ed. Philadelphia: Elsevier; 2012:1871-1895.e7.)


Pathophysiology of pelvic organ prolapse


The pathophysiology of POP is probably multifactorial . Bump and Norton outlined a useful concept for looking at risk factors as predisposing, inciting, promoting, or decompensating ( Fig. 20.11 ). Although imaging is not usually necessary in the clinical evaluation of POP, imaging techniques, including ultrasonography and MRI, in research studies have improved our understanding of support defects. In one study, MRI three-dimensional (3D) color thickness mapping was used to compare the levator ani of 30 women: 10 asymptomatic, 10 with urodynamic stress incontinence, and 10 with POP. Loss of levator muscle bulk was found in women with POP and stress incontinence ( Fig. 20.12 ) ( ). Theoretic explanations for these findings include muscle atrophy from denervation from childbirth injuries, muscle wasting from muscle insertion detachment from childbirth injuries, or both. Remarkably, the pelvic floor muscles and pelvic support structures usually recover to a large extent after childbirth so that most women do not have symptomatic prolapse until later in life when the effects of aging combine with the childbirth injuries to result in clinically significant prolapse.




Fig. 20.11


Model for the development of pelvic floor dysfunction in women.

(From Bump RC, Norton PA. Epidemiology and natural history of pelvic floor dysfunction. Obstet Gynecol ClNA. 1998;25(4):723.)



Fig. 20.12


Color images of reconstructed levator ani muscles from three subject groups: ( A ) asymptomatic group, ( B ) stress incontinence group, and ( C ) prolapse group.

(From Hoyte L, Jakab M, Warfield SK. Levator ani thickness variations in symptomatic and asymptomatic women using magnetic resonance-based 3-dimensional color mapping. Am J Obstet Gynecol. 2004;191:856.)


MRI studies of POP have also shown that women with POP have a more vertical vaginal axis and urogenital hiatus than women without POP. In young, healthy women without POP, the upper two-thirds of the vagina is nearly horizontal (see Fig. 20.10 ).


Pelvic organ prolapse symptoms


Symptoms of POP are often not specific to the area that is prolapsing, and many women have no symptoms. The classic symptoms of prolapse include vaginal heaviness, pressure and vaginal bulging. Because more than one pelvic floor disorder is often present, urinary, bowel, and sexual symptoms should be assessed in addition to prolapse symptoms in any woman with POP ( Box 20.2 ). Urinary symptoms associated with prolapse can include urinary incontinence, difficulty voiding, urinary urgency, slow urinary stream, splinting (reducing the prolapse) to void, or a sensation of incomplete bladder emptying. Bowel symptoms associated with prolapse can include constipation, straining, incomplete evacuation, fecal incontinence, or splinting to achieve bowel movements. Associated sexual symptoms may include discomfort, irritation, and decreased sexual desire. Vaginal bleeding might occur from erosions of exposed vaginal epithelium. Note that if a postmenopausal woman with prolapse has vaginal bleeding and there are no obvious erosions, a uterine source must also be considered. Back pain and pelvic pain are not reliably associated with prolapse.



BOX 20.2

Pelvic Organ Prolapse Symptom Categories for Clinical Evaluation





  • Lower urinary tract symptoms



  • Urinary incontinence



  • Frequency, urgency, nocturia



  • Voiding difficulty: slow stream, incomplete emptying, obstruction



  • Urinary splinting



Bowel symptoms





  • Constipation



  • Straining



  • Incomplete evacuation



  • Bowel splinting



  • Anal incontinence



Sexual symptoms





  • Interference with sexual activity



  • Dyspareunia



  • Decreased sexual desire



  • Urinary incontinence with intercourse, orgasm



Other symptoms





  • Pelvic pressure, heaviness, pain



  • Presence of vaginal bulge/mass



  • Low back pain



  • Tampon not retained



  • Quality-of-life effects




A patient with POP should also be asked about how her prolapse symptoms affect her quality of life, emotional health, and social interactions as well as whether or not they affect her ability to do usual daily chores, exercise, and participate in social events. Validated, self-administered questionnaires are available, such as the Pelvic Organ Prolapse Quality of Life (P-QOL) scale and the Pelvic Floor Distress Inventory, which cover these categories. Understanding the woman’s goals for treatment is important because often there are multiple symptoms in each of these areas that cause varying degrees of bother and distress.


If a woman with objective prolapse does not have any bothersome symptoms or evidence of associated medical risks such as urinary retention or renal impairment from urethral or ureteral kinking, she does not need treatment.


Measuring pelvic organ prolapse


POP is best measured with a patient straining in the lithotomy position, although the physician should ask the patient if this reproduces her maximum bulge and, if not, repeat the examination in the standing position . Maximum prolapse is more likely to be observed with a full bladder in the standing position at the end of the day. All three compartments (anterior, posterior, and apical) should be individually assessed in all patients with prolapse . To observe and measure anterior vaginal wall prolapse, a retractor or posterior wall blade of a Pederson or Graves speculum is used to depress the posterior vaginal wall without artificially supporting the apex. The patient is then asked to strain, and the amount of anterior vaginal wall prolapse is noted. This is repeated by using one blade of the speculum to depress the anterior vaginal wall to evaluate the posterior vaginal wall. To assess apical descent, a measuring device such a uterine sound or POPQ (Pelvic Organ Prolapse Quantification) stick can be placed in the apex or the examiner’s finger can be placed on the vaginal vault or cervix while the patient strains.


It is important to measure or at least qualitatively assess all of the vaginal walls because often more than one compartment is affected. For instance, at least 85% of patient with anterior vaginal wall prolapse more than 1 cm outside the hymen have associated apical descent ( ). This is important to know for planning surgical correction because failure to address all areas of descent increases the risk of prolapse recurrence.


There are several systems for objectively measuring POP. In one system, prolapse into the upper barrel of the vagina is called first degree , prolapse is to the introitus is second degree , prolapse past the introitus is third degree , and complete eversion of the vagina is fourth degree prolapse. In the Baden-Walker system, grade 0 is normal position, grade 1 is descent halfway to the hymen, grade 2 is descent to the hymen, grade 3 is descent halfway past the hymen, and grade 4 is maximum possible descent ( ). Although these systems are commonly used and reasonable, they provide no information regarding which walls of the vagina are prolapsed and are rather imprecise regarding the severity of the prolapse, so in 1996 the Pelvic Organ Prolapse Quantification ( POP-Q ) system was developed (see the next section of this chapter) ( ). A comparison of these measurement systems is shown in Fig. 20.13 . Whatever system is used, it is important to measure all three compartments (anterior, posterior, and apical) and document the level of prolapse compared with the introitus or hymen while the patient strains.




Fig. 20.13


Visual comparison of systems used to quantify pelvic organ prolapse (POP). AUGS, American Urogynecologic Society; ICS, International Continence Society; SGS, Society of Gynecologic Surgeons.

(From Theofrastous JP, Swift SE. The clinical evaluation of pelvic floor dysfunction. Obstet Gynecol Clin North Am. 1998;25(4):783-804.)


The degree of prolapse can vary by day depending on time of day and recent activities, so it is helpful to ask a patient if what you are seeing in clinic is what she experiences at home. In addition, if the prolapse measured while she is supine on an examination table does not reproduce the prolapse she reports, the examination should be repeated with the patient straining in a standing rather than supine position.


Vaginal tissues should also be checked for ulceration and bleeding. Pelvic floor muscle bulk, symmetry, and function should be assessed during the bimanual examination by asking the woman to tighten her muscles like she is trying to inhibit voiding or flatus. A bimanual examination of the uterus and adnexa, if present, should always be performed to screen for masses and help with surgical planning if indicated.


Pelvic organ prolapse quantification (POP-Q)


In 1996 the International Continence Society (ICS), the American Urogynecologic Society (AUGS), and the Society of Gynecologic Surgeons (SGS) adopted a standardized terminology for the description of female POP (anterior, posterior, and uterine/cervical or vault prolapse, as mentioned earlier) and a standard measurement system for POP: the POP-Q ( ). POP-Q is an objective, site-specific system for describing, quantifying, and staging pelvic support and was developed to enhance clinical and academic communication with respect to individual patients and populations of patients.


In the POP-Q system, as shown in Fig. 20.14 , all measurements except for total vaginal length (TVL) are performed while the patient strains (bears down). Point Aa is a point located in the midline of the anterior wall 3 cm proximal to the external urethral meatus and is roughly the location of the urethrovesical crease ( Fig. 20.15 ). Point Ba represents the most distal position of the anterior vaginal wall between Aa and the cervix or cuff. Point C represents either the most distal edge of the cervix or the leading edge of the vaginal cuff if a hysterectomy has been performed. Point D represents the location of the posterior fornix (pouch of Douglas) or the posterior point of attachment of the uterosacral ligaments (there is debate among the experts) in a woman with a cervix. In a patient who has no cervix, no D point is measured. Point Bp is the most distal of any part of the upper posterior vaginal wall between Ap and the cervix or cuff, and point Ap is a point located in the midline of the posterior vaginal wall 3 cm proximal to the hymen. These points should be expressed in centimeters above or below the hymen (i.e., negative measurements are above the hymen and positive measurements are below the hymen). PB, which is the length of the perineal body between the posterior vagina and rectum, and GH, which is the genital hiatus measurement from the urethra to the posterior vagina, are measured during strain and do not have positive or negative values because they are not compared with the hymen.




Fig. 20.14


A, Landmarks for the Pelvic Organ Prolapse Quantification System (POP-Q) system. B, POP-Q points of reference.

( A, from Bump RC, Mattiasson A, Bo K, et al. The standardization of terminology of female pelvic organ prolapse and pelvic floor dysfunction. Am J Obstet Gynecol. 1996;175(1):10–17. B from and A also modified from Kobashi KC. Evaluation of patients with urinary Incontinence and pelvic prolapse. In: Wein AJ, Kavoussi LR, Novick AC, et al. Campbell-Walsh Urology. 10th ed. Philadelphia: Elsevier; 2012:1896-1908.e30.)



Fig. 20.15


Measuring point Aa. At rest, the Aa point is marked 3 cm proximal to the urethral meatus along the anterior vaginal wall (left). Then the patient is asked to strain, and the location of this point is measure in relation to the plane of the hymenal remnant (right). In this case Aa is equal to +2 cm (2 cm past the hymen). In clinical practice, an imaginary mark is used.

(From Reid F. Assessment of pelvic organ prolapse. Obstet Gynaecol Reprod Med. 2011;21(7):190-197.)


Stage


The most severe prolapse measurement on any of the vaginal walls can then be used to assign the stage of prolapse, as described in Box 20.3 : Stage 0 : no prolapse; stage I : the most distal prolapse is more than 1 cm above (inside) the hymen; stage II : prolapse between 1 cm above and 1 cm below (outside) the hymen; stage III : prolapse more than 1 cm beyond the hymen but no farther than TVL − 2 cm; and stage IV : complete eversion/procidentia.



BOX 20.3

Staging of Pelvic Floor Prolapse Using International Continence Society Terminology


Stage 0


No prolapse is demonstrated. Points Aa, Ap, Ba, and Bp are all at –3 cm, and either point C or D is between total vaginal length –2 cm.


Stage I


Criteria for stage 0 are not met, but the most distal portion of the prolapse is more than 1 cm above the level of the hymen.


Stage II


The most distal portion of the prolapse is 1 cm or less proximal or distal to the plane of the hymen.


Stage III


The most distal portion of the prolapse is more than 1 cm below the plane of the hymen but protrudes no farther than 2 cm less than the total vaginal length in centimeters.


Stage IV


Essentially complete eversion of the total length of the lower genital tract.



The POP-Q provides a clear and complete description of a patient’s prolapse that facilitates effective communication between physicians and reproducible, meaningful measures for research.


Conservative management of pelvic organ prolapse


Expectant management


If the patient is not bothered by the prolapse, it can be left alone and managed expectantly unless it causes urinary retention or hydronephrosis no matter what degree or stage it is . Patients can be advised to do pelvic floor strengthening exercises (i.e., Kegels, discussed in Chapter 21 ) with or without a pelvic floor physical therapist to decrease the risk that mild POP will progress and become symptomatic.


Treatment of vaginal wall prolapse may be nonoperative or operative depending on patient preferences and goals.


Pelvic floor strengthening


Women with mild to moderate (e.g., stage II) POP may elect for treatment with pelvic floor physical therapy and Kegel exercises, which can decrease the risk of prolapse progression and can be effective at improving the sensation of pressure from mild POP (Kegel exercises are described in Chapter 21 ). Pelvic floor physical therapy can also treat associated urinary, bowel, and sexual dysfunction.


There is reasonable evidence to recommend pelvic floor exercises. In one multicenter study, 447 women were randomly assigned to receive individualized pelvic floor muscle training or a prolapse lifestyle advice leaflet with no muscle training (control group). At 6 and 12 months, the women assigned to pelvic floor muscle training had fewer prolapse symptoms as measured by a prolapse symptom questionnaire (the Pelvic Organ Prolapse Symptom Score [POP-SS]) than the control group ( ). Another randomized controlled trial investigated morphologic and functional changes after pelvic floor muscle training in 109 women with stage I to III POP ( ). This supervised training led to a 44% increase in muscle strength, a 15% increase in muscle thickness, a decreased levator hiatus area, shortened muscle length, and elevation of the bladder and rectum positions. It took 6 months of muscle training to achieve these results, so this option requires motivated patients. A follow-up study by the same group reported that 11 (19%) of women in the exercise group improved one stage on the POP-Q system compared with 4 controls (8%). This improvement in stage corresponded with reduced frequency and bother of vaginal bulging and heaviness by 74% and 67%, respectively.


About half of patients cannot isolate their pelvic floor muscles to do Kegel exercises and need to be coached or taught how to do these exercises. Women who have performed Kegel exercises on their own and have not improved may still benefit from working with a physical therapist who can individualize muscle training and provide feedback and biofeedback to these patients. Pelvic floor strengthening has essentially no risks or side effects (unless a patient does too many and develops muscle soreness) and so should be offered to nearly all patients with POP.


Topical vaginal estrogen


Although not a treatment for POP itself, the use of vaginal estrogen in postmenopausal patients may improve vaginal atrophy and patient comfort if the prolapsed vaginal epithelium is dry, irritated, or ulcerated . There is no evidence that estrogen therapy will prevent or treat POP, but it can often make existing POP less uncomfortable.


The use of vaginal estrogen can also make vaginal intercourse more comfortable; for patients with dyspareunia (with or without prolapse), vaginal estrogen should always be considered because atrophic vaginitis caused by lack of estrogen is much more likely to cause pain with vaginal intercourse than prolapse. Vaginal estrogen can improve the comfort and decrease the risk of irritation and erosions from pessaries (described later), and it can decrease irritative bladder symptoms including frequency, urgency, nocturia, and frequent urinary tract infections.


There are several ways to apply topical vaginal estrogens (vaginal creams, vaginal tablets, and a vaginal ring), and they all have similar efficacy. Because the dose of vaginal estrogen is very low, using vaginal estrogen is not associated with the development of cancers or blood clots and can be offered to almost all women, even many of those with a personal history of breast cancer or deep venous thrombosis.


Pessaries


Nonoperative support of the POP can also be achieved with a silicone vaginal support device called a pessary ( Fig. 20.16 ). If silicone pessaries are not available, a woman can support her prolapse with intermittent use of a large tampon, although support objects with absorptive properties may be associated with toxic shock syndrome if left in for prolonged periods and so need to be removed more often.




Fig. 20.16


Examples of pessaries: A, inflatable; B, donut; C, Gellhorn; D, cube; E, ring with support.


All women should be offered pessary management for symptomatic prolapse, regardless of the age of the patient or stage of the prolapse. Approximately 85% of patients can be successfully fit with a pessary . Pessary management should be particularly encouraged as an alternative to surgery in women with medical conditions that make surgery dangerous and in women who have not completed childbearing.


Pessaries support the vagina in its normal position in the pelvis, thus supporting the surrounding structures including the uterus, bladder, small bowel, and rectum. Pessaries are available in varying shapes and sizes and need to be fitted for each individual patient. There are limited data to direct the selection of the pessary based on patient factors or type of prolapse, and pessary fitting is largely trial and error. When trying a new pessary, the patient is asked if the pessary feels comfortable; if it is comfortable, she is asked to bear down. If the pessary falls down or out, then a different size or shape should be tried.


The ring pessary is the most commonly used shape, partly because it is the easiest for the patient to place and remove . Space-occupying pessaries such as the cube, Gelhorn, donut, and Inflatoball, are common second options if the rings turn sideways or falls down. Gelhorn pessaries may have a higher chance of adequate support than rings in patients who have undergone hysterectomy or have advanced prolapse, but it is reasonable to start with the smallest and easiest to use shapes first. In a postmenopausal woman, estrogen replacement for at least 30 days with vaginal estrogen cream before pessary fitting may help improve atrophic vaginitis and make fitting of a pessary more comfortable.


Pessaries often successfully reduce the prolapse and symptoms associated with prolapse, but they do not always adequately control patients’ symptoms or work for her lifestyle . One prospective trial found that 75% of 203 women fitted with a pessary successfully retained the device at 2 weeks ( ). Failure to retain the pessary was significantly associated with increasing parity, prior POP surgery, large genital hiatus, and past hysterectomy. At 4 months the pessaries reduced symptoms associated with POP, including voiding problems (40%), urinary urgency (38%), urgency urinary incontinence (29%), bowel evacuation (28%), fecal urgency (23%), and urge fecal incontinence (20%). There was no improvement in stress urinary incontinence, and in fact sometimes reducing the prolapse (either with a pessary or surgery) can unmask stress urinary incontinence by supporting the bladder and unkinking the urethra. Women are unlikely to continue wearing a pessary if it causes or worsens stress incontinence. Sometimes a ring pessary with a knob or incontinence dish pessary with knob, positioned correctly under the urethra, can improve urethral support and reduce stress incontinence .


Complications


Complications from vaginal pessaries are rare with proper use . This includes regular removal, cleaning, and replacement, as well as use of vaginal estrogen cream for postmenopausal women with vaginal atrophy if possible. Complications include bleeding, discomfort, vaginal erosions (2% to 9%), and difficulty removing a pessary. Rare, serious complications such as erosion into the bladder and rectum have been reported, usually from neglect. Though not a complication, and usually not a sign of infection, many patients notice increased vaginal discharge while using pessaries, and this is one reason some patients eventually elect for surgery instead of pessary management.


Pregnancy


If a woman with advanced prolapse is pregnant, it is important to replace the uterus before it enlarges and becomes trapped in the lower pelvis or vagina around the beginning of the second trimester. If this happens, edema may cause incarceration and even loss of blood supply to the uterus, resulting in loss of the pregnancy.


Surgery


If pelvic floor strengthening or pessaries do not adequately control the prolapse symptoms or if a patient declines these options, then surgery can be considered. A young woman should be encouraged to avoid operative repair until she has completed her family. Surgical options including vaginal, laparoscopic, robotic, and open approaches, with and without mesh augmentation. Shared decision making is optimal with these quality-of-life procedures, and the effectiveness of surgery, risks, recovery time, and patient goals all factor into the decision making. It is worth stating that hysterectomy alone is NOT a surgical treatment for prolapse ; all this does is trade uterine prolapse for vault prolapse, and the patient’s symptoms and bother do not improve. Several specific surgical treatments to address the various types of prolapse are discussed later.


Anterior vaginal wall prolapse


The anterior vaginal wall is the most common site of POP . Anterior vaginal wall prolapse most commonly involves a cystocele, in which the bladder descends with the vaginal wall relaxation, and it can less commonly include an enterocele, in which the small bowel descends behind the upper vagina. Anterior compartment defects may also allow the descent of the urethra (urethrocele) and bladder neck. Normal support of the anterior vaginal wall depends on level I apical support and level II support from the endopelvic connective tissue and its attachments to the bony pelvis and pelvic muscles. The trapezoidal anterior vaginal wall has distal and medial attachments near the pubic symphysis, lateral attachments to the arcus tendineus fascia pelvis, and proximal and lateral attachments near the ischial spines. Anatomic studies have identified breaks in these attachments in women with POP. Distal detachments from near the pubic symphysis may result in urethroceles or urethral hypermobility. Anterior vaginal wall prolapse can be associated with stress urinary incontinence from urethral hypermobility, urgency urinary incontinence, or urinary retention from urethral kinking obstructs the flow of urine ( Fig. 20.17 ). Although urethroceles and cystoceles almost always occur in parous women, they have been noted in nulliparous women who have poor structural supports. This is particularly true in women who have congenital malformations or weaknesses of the endopelvic connective tissue and musculature of the pelvic floor. Most parous women demonstrate some degree of cystocele, and when asymptomatic, they do not require therapy.


Aug 8, 2021 | Posted by in GYNECOLOGY | Comments Off on Pelvic organ prolapse, abdominal hernias, and inguinal hernias: Diagnosis and Management
Premium Wordpress Themes by UFO Themes