Budget IVF Using Clomiphene, hMG, and Antagonists

 

Study type
Inclusion criteria
Study group protocol
Control group protocol
Results
Williams et al. (2002)
Retrospective controlled trial
Patients <40 years in their first IVF cycle
CC 100 mg days 3–7
FSH 150 IU day 9 onward. With or without GnRH antagonist. hCG 10,000 IU when leading follicle >18 mm and at least two other follicles >16 mm (n = 55)
Leuprolide long regimen with r-FSH 150–300 IU. hCG 10,000 IU when leading follicle >18 mm and at least two other follicles >16 mm (n = 55)
Oocytes retrieved 4.8 ± 2.6 versus 16.2 ± 7.5. Pregnancy rate 37 % versus 41 % (NS). Ampoules used 5.7 ± 4.2 versus 25 ± 7.5
CC 100 mg days 3–7.
FSH 150 IU day 9 onward. With Ganirelix (n = 10)
CC 100 mg days 3–7
FSH 150 IU D9 onward. Without Ganirelix (n = 10)
Oocytes retrieved 4.9 ± 3.1 versus 3.1 ± 1.0 (NS). Pregnancy rate
75 % versus 30 % (NS)
Premature LH surge 0 versus 5 % (NS)
Fiedler and Ludwig (2003)
Non-randomized trial
Randomly selected normal cycling women
CC 100 mg days 5–9. hMG or FSH 150 IU day 9 onward. Antagonist 0.25 mg day 10 onward (n = 1354)
Long agonist protocol (n = 4704)
Oocytes retrieved 5.2 ± 3.5 versus 7.9 ± 4.2
Pregnancy rate 31.3 % versus 33.9 % (NS)
Lin et al. (2006)
Randomized controlled trial
Couples with male factor infertility, in their first ICSI cycle
CC/hMG/Cetrorelix protocol (n = 60)
Buserelin long protocol (n = 60)
Oocytes retrieved 11.1 ± 4.0 versus 17.3 ± 5.8. Pregnancy rate 41.7 % versus 40 % (NS). Ampoules used 18.9 ± 3.0 versus 38.9 ± 12.2
Mansour et al. (2003)
Non-randomized trial
Couples with male factor infertility in their first ICSI cycle
CC 100–150 mg days 2–6. hMG 150 IU days 6–10. Antagonist 0.25 mg when leading follicle reached 16 mm (n = 33)
Decapeptyl long protocol (n = 156)
Pregnancy rate 24 % versus 59 %.
Hwang et al. (2003)
Prospective study
Couples with male factor infertility undergoing ICSI
CC 100 mg days 3–7
hMG 150 IU alternate days. Antagonist 2.5 mg when leading follicle reached 14 mm (n = 40)
Pregnancy rate 40 %. Ongoing pregnancy rate 35 %. No premature LH surge
Engel et al. (2002)
Prospective nonrandomized trial
Women between 18 and 39 years of age in their first IVF cycle
CC/hMG/antagonist (n = 54)
CC/r-FSH/antagonist (n = 53)
Pregnancy rate 25.9 % versus 13.2 % (NS)
Premature LH surge 16.7 versus 26.4 (NS)
Ampoules used 19.9 ± 8.7 versus 19.4 ± 8.9 (NS)
Stimulation days 7.1 ± 2.1 versus 6.8 ± 2.0 (NS)
Outcomes were significantly different unless stated otherwise
Studies (Williams et al. 2002; Fiedler and Ludwig 2003; Lin et al. 2006; Karimzadeh et al. 2010) comparing the CC/gonadotropin/GnRH antagonist protocol to the standard long agonist regimen report similar pregnancy rates in both groups despite a lower number of oocytes in the mild stimulation group. There is a significant reduction in the number of ampoules of gonadotropin used, the number of treatment days, and the costs. Only one non-randomized comparative study (Mansour et al. 2003) reported significantly lower pregnancy rates following ovarian stimulation with a CC/hMG protocol with GnRH antagonist compared with a long GnRH agonist protocol.
Hwang et al. (2003) reported on a combined protocol of CC/gonadotropin/GnRH antagonist with mean number of 8.0 oocytes retrieved and an ongoing pregnancy rate of 35 % per started cycle. The mild stimulation regimen used varies in the different studies. In most studies, a protocol of 100 mg Clomiphene citrate for 5 days soon after the onset of menses is combined with low-dose gonadotropins. The starting dose of gonadotropins, day of initiation, daily or alternate-day injection, and fixed or flexible antagonist dosing vary from study to study.
It has been debated whether hMG or r-FSH should be used in the CC/gonadotropin/GnRH antagonist protocol. Engel et al. (2002) reported that both treatment groups (hMG and rFSH), yielded comparable results concerning gonadotropin dose, stimulation days, and pregnancy rate. Interestingly, one study (Yanaihara et al. 2008) reported that in CC/gonadotropin/GnRH antagonist cycles, when the circulating level of LH is less than one-third at the time of hCG than it was at the beginning of stimulation, both pregnancy and implantation rates are significantly reduced. This observation suggests the relevance of using gonadotropins containing LH or hCG rather than FSH alone in this protocol. Also, mounting evidence indicates that LH or hCG activity during ovarian stimulation treatment is capable of modulating folliculogenesis by reducing the number of small or intermediate-sized follicles (Platteau et al. 2006). The positive effects of exogenous LH or hCG activity derived from hMG on folliculogenesis, embryo quality, and endometrial receptivity have been addressed in large randomized trials (Platteau et al. 2006; Filicori et al. 2002, 2005).
Few studies have evaluated the use of this regimen in poor responders. The first study (Craft et al. 1999) which included only 18 patients compared the CC/gonadotropin/GnRH antagonist protocol to their response in previous long agonist cycles. Smaller cycle cancellation rate, better oocyte yield, and lower gonadotropin requirement were observed in the mild group. Takahashi et al (Takahashi et al. 2004) studied this protocol in 40 poor responders with previous multiple IVF failures using the long agonist protocol. They noted that the ovarian response using the mild protocol was comparable to that obtained in the previous attempts with the long regimen, but the blastocyst development rate and ongoing pregnancy rate (41.2 %) were significantly higher with the mild protocol. D’Amato et al (D’Amato et al. 2004) in a prospective randomized study of poor responders and older women compared a sequential protocol of CC/FSH/GnRH antagonist with the long GnRH agonist protocol and reported a significantly lower cancellation rate, higher peak estradiol level, more retrieved oocytes, and higher pregnancy and implantation rates in the antagonist group. Only in the antagonist group, the results were comparable in younger (<35 years) and older (>35 years) women. In this study, however, high-dose FSH was used and hence, the observations only indicate that this regimen with low-dose gonadotropins may be suitable for poor responders and older women.

Advantages of Mild IVF

Similar Live-Birth Rate

In mild IVF protocols, low doses of gonadotropins are used and cycles are of short duration. There is no need to wait before starting the next new cycle and treatment can be repeated in consecutive cycles offering attractive cumulative pregnancy rates over a time frame. Heijnen et al. (2007) compared mild IVF with single-embryo transfer to conventional IVF with two-embryo transfers. They observed that the mild approach resulted in an equal cumulative chance of term live birth after a year of treatment while significantly reducing the total costs and multiple births.

Improved Safety

Mild stimulation regimens significantly reduce the risk of severe OHSS (Hejinen et al. 2007; Karimzadeh et al. 2010). Studies have shown that the risk of severe OHSS is lower in the GnRH antagonist protocol as compared with the GnRH agonist protocol (Al-Inany et al. 2006; Kolibianakis et al. 2006). Furthermore, the antagonist protocol allows the use of GnRH agonist to trigger final oocyte maturation instead of hCG, further reducing the risk of OHSS (Humaidan et al. 2009). Mild IVF protocols combined with single embryo transfer are associated with a significantly lower risk of multiple pregnancy (Hejinen et al. 2007; Kato et al. 2012).

Reduced Discomfort and Dropout Rates

In mild IVF using the CC/gonadotropin/GnRH antagonist protocol, the painful and expensive injections of conventional IVF in the initial part of the cycle are substituted by inexpensive oral medications, reducing patient discomfort and improving compliance. Mild protocols decrease the number of visits to the clinic so that there is very little interference with work schedules and other regular commitments. Mild IVF is associated with fewer side effects and stress related to treatment and cycle cancellation compared with conventional IVF (Højgaard et al. 2001; de Klerk et al. 2006). There is an increased likelihood that patients will continue treatment following a failed attempt and therefore, compensate for the lower pregnancy rate per cycle following mild stimulation (Verberg et al. 2008a).

Beneficial Effect on Oocyte and Embryo Quality and Endometrial Receptivity

A recent meta-analysis (Verberg et al. 2008b) suggested that the retrieval of a modest number of oocytes following mild stimulation is associated with a distinctly higher implantation rate when compared to the same number of oocytes retrieved following conventional stimulation. A low number of oocytes retrieved following conventional IVF is associated with a poor clinical outcome. This could mean that the milder ovarian stimulation interferes less with the process of natural follicle selection and results in better oocyte quality. Furthermore, mild approaches might also improve endometrial receptivity and luteal function which are altered following conventional ovarian stimulation.
Higher pregnancy rates and live birth rates were obtained in frozen-thawed embryo transfer cycles compared to fresh cycles (Kato et al. 2012; Zhang et al. 2010). This might be related to the antiestrogenic effect of CC on the endometrium in fresh cycles which, in contrast, is abolished in hormonal replacement frozen-thawed embryo transfer cycles.

Reduced Costs

Mild IVF entails limited use of gonadotropins, a lower risk of OHSS, and when combined with single embryo transfer (SET) a lower risk of multiple pregnancy. Zhang et al. (2010) reported a cost reduction per live birth of 66 % when using the mild protocol, and this did not include the costs associated with the management of OHSS and multiple pregnancy which are far more common with conventional IVF.
Eijkemans et al. (2006) reported comparable cumulative term live birth rates after one year (43.4 % versus 44.7 %,) in the mild and conventional IVF groups, with significantly lower total costs per term live birth within a year in the mild group.

Disadvantages of Mild IVF

World over, success rates are calculated and quoted as success rates per cycle; hence mild approaches invariably fall short when compared with conventional IVF. Following mild IVF, there is reduced likelihood of having surplus embryos for cryopreservation, reducing the overall efficacy of a single stimulated cycle. Since there are fewer oocytes to start with, there is no room for suboptimal laboratory performance. Mild protocols usually require more than one cycle to achieve success. Hence, this form of IVF needs proper counseling so that patients are aware and are prepared for multiple attempts.
The considerations related to different approaches in ovarian stimulation are presented in Table 10.2.
Table 10.2
Considerations related to different approaches in ovarian stimulation
Current ovarian stimulation approaches
Mild stimulation approaches
Aiming for maximum number of oocytes
Time-consuming and complex stimulation regimens
High costs
Much patient discomfort
Short-term complications: ovarian hyperstimulation syndrome (OHSS)
Long-term health consequences uncertain
High dropout rates
Supraphysiological steroid levels with possible implications
Emphasis on additional pregnancy chances from cryopreserved embryos
Emphasis on maximizing pregnancy rates per cycle
Less complex
Less time-consuming
Cheaper (making IVF more accessible for a broader patient population)
Reduced chances for complications
Reduced chances for discomfort
Reduced chances for dropout
Effects on oocyte quality
Effects on endometrial receptivity
Emphasis on maximizing chances for healthy children born per started treatment at reasonable cost, patient discomfort, and chances for complications
From Verberg et al. (2009). Reprinted with permission from the Oxford University Press

Conclusions

Evidence in favor of mild IVF is accumulating in the literature, and its use is becoming a widespread practice around the world. Mild IVF protocols seem to be suitable for most indications for conventional IVF. Mild IVF regimens employ the use of low-dose gonadotropins and are of short duration. The fewer side effects, better patient tolerability, and reduced costs decrease the stress and burden associated with IVF, decreasing the dropout rates and encouraging couples to perform more attempts, thereby improving cumulative pregnancy rates. The mild stimulation approach, especially when combined with single embryo transfer, may represent an important step toward the objective of an easier patient-friendly IVF, cost-effective for both patients and society, while still having an acceptable effectiveness in terms of live birth rates.
An important concern regarding the use of a mild treatment strategy remains the reduction in the per cycle chance of pregnancy. It is essential to redefine IVF success as singleton (or twin) live birth rate assessed over a time frame rather than per started cycle.
There are a spectrum of protocols for mild IVF varying from the use of Clomiphene alone, gonadotropins alone, or Clomiphene followed by gonadotropins, with or without GnRH antagonist. The CC/gonadotropin/GnRH antagonist protocol takes advantage of the synergistic effect of CC and gonadotropins on follicular growth. The gonadotropins also counteract the antiestrogenic effect of CC on endometrium, and the antagonist started in the mid-follicular phase effectively prevents the LH surge.
Up to now, studies on mild IVF protocols have been limited by small sample sizes, few randomized studies, and ill-defined end points. What is definitely needed is properly designed randomized controlled trials (RCT) comparing mild IVF protocols with conventional long agonist protocols in different subsets of infertility patients. These studies should come from different research groups and should also include freeze-thaw cycles.
Finally, the chances for IVF success should be balanced against patient discomfort, risk of complications, and costs. The implementation of mild stimulation into standard clinical practice appears to be justified and is worth pursuing.
References
Albano C, Felberbaum RE, Smitz J, Riethmüller-Winzen H, Engel J, Diedrich K, et al. Ovarian stimulation with HMG: results of a prospective randomized phase III European study comparing the luteinizing hormone-releasing hormone (LHRH)-antagonist cetrorelix and the LHRH-agonist buserelin. Hum Reprod. 2000;15(3):526–31.PubMed

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Jun 25, 2017 | Posted by in GYNECOLOGY | Comments Off on Budget IVF Using Clomiphene, hMG, and Antagonists

Full access? Get Clinical Tree

Get Clinical Tree app for offline access